What we do?

Our research is aimed at advancing food safety from farm to folk by precisely understand human health risk potentially posed by foodborne pathogens of animal origin (Theme 1) as well as to develop innovative strategies to minimize food safety risk (Theme 2).


Theme 1

The research activities are centered on defining mechanisms that promote persistence and transmission of zoonotic pathogens in the entire food production system using cutting-edge technologies (e.g. single cell RNA-seq and live-cell imaging microscopy). Our current focuses are 1) towards an understanding of the molecular and cellular basis for biofilm formation of zoonotic pathogens in gastrointestinal and respiratory tract of animal and food processing environment; 2) study physiological growth parameters, population dynamics and alternations of virulence traits of microbial pathogens under real food production environments; 3) Investigate footprint and persistence of antimicrobial resistance genes in livestock production system using metagenomics approaches.


Theme 2

The number one research effort focuses on explore effective and environmental friendly measures (e.g. bacteriophage-derived biocontrol, nanotechnology) to intervene antimicrobial resistance transfer and for prevention and control of zoonotic pathogens. We will initially focus our efforts on improved strategies for biocontrol of pathogenic E. coli, Salmonella and Campylobacter spp., the top three most burdensome bacterial foodborne pathogens in terms of costs of foodborne illness and deaths in Canada. To develop better bacteriophage biocontrol products, we are interested in deep understanding interaction and dynamics between phage and their bacterial host at both population and single-cell resolution. We are also interested in gaining knowledge of phage-phage interaction as well as how phageome interact with microbiome and their role in regulation of microbiome structure and metabolism and host immunity in animal and human health. The #2 research direction centers on developing robust, rapid and sensitive innovative technologies for real-time detection of foodborne pathogens and diagnosis of infectious disease. Our current dedication is development of isothermal nucleic acid amplification based platform for diagnosis of animal infectious disease (e.g. BRD).